Serveur d'exploration Glutathion S-transférase végétale

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.

Identifieur interne : 000246 ( Main/Exploration ); précédent : 000245; suivant : 000247

Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.

Auteurs : Juan Pariasca-Tanaka [Japon] ; Cedric Baertschi [Japon] ; Matthias Wissuwa [Japon]

Source :

RBID : pubmed:32010158

Abstract

Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice (Oryza sativa L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance. Plants were grown in nutrient solution with either low (0.01 mM) or high (1.0 mM) supply of S. Plants grown under low-S treatment showed a reduction in total biomass, mainly due to a marked reduction in shoot biomass, while root biomass and root-to-shoot ratio increased, relative to plants under high-S treatment. Genome-wide association studies (GWAS) identified loci associated with root length (qSUE2-3, qSUE4, and qSUE9), and root (qSUE1, qSUE2-1, and qSUE3-1 and qSUE3-2) or total dry matter (qSUE2, qSUE3-1, and qSUE11). Candidate genes identified at associated loci coded for enzymes involved in secondary S metabolic pathways (sulfotransferases), wherein the sulfated compounds play several roles in plant responses to abiotic stress; cell wall metabolism including wall loosening and modification (carbohydrate hydrolases: beta-glucosidase and beta-gluconase) important for root growth; and cell detoxification (glutathione S-transferase). This study confirmed the existence of genetic variation conferring tolerance to S deficiency among traditional aus rice varieties. The advantageous haplotypes identified could be exploited through marker assisted breeding to improve tolerance to S-deficiency in modern cultivars in order to achieve sustainable crop production and food security.

DOI: 10.3389/fpls.2019.01668
PubMed: 32010158
PubMed Central: PMC6975283


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.</title>
<author>
<name sortKey="Pariasca Tanaka, Juan" sort="Pariasca Tanaka, Juan" uniqKey="Pariasca Tanaka J" first="Juan" last="Pariasca-Tanaka">Juan Pariasca-Tanaka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baertschi, Cedric" sort="Baertschi, Cedric" uniqKey="Baertschi C" first="Cedric" last="Baertschi">Cedric Baertschi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wissuwa, Matthias" sort="Wissuwa, Matthias" uniqKey="Wissuwa M" first="Matthias" last="Wissuwa">Matthias Wissuwa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:32010158</idno>
<idno type="pmid">32010158</idno>
<idno type="doi">10.3389/fpls.2019.01668</idno>
<idno type="pmc">PMC6975283</idno>
<idno type="wicri:Area/Main/Corpus">000226</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000226</idno>
<idno type="wicri:Area/Main/Curation">000226</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000226</idno>
<idno type="wicri:Area/Main/Exploration">000226</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.</title>
<author>
<name sortKey="Pariasca Tanaka, Juan" sort="Pariasca Tanaka, Juan" uniqKey="Pariasca Tanaka J" first="Juan" last="Pariasca-Tanaka">Juan Pariasca-Tanaka</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Baertschi, Cedric" sort="Baertschi, Cedric" uniqKey="Baertschi C" first="Cedric" last="Baertschi">Cedric Baertschi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wissuwa, Matthias" sort="Wissuwa, Matthias" uniqKey="Wissuwa M" first="Matthias" last="Wissuwa">Matthias Wissuwa</name>
<affiliation wicri:level="1">
<nlm:affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</nlm:affiliation>
<country xml:lang="fr">Japon</country>
<wicri:regionArea>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba</wicri:regionArea>
<wicri:noRegion>Tsukuba</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in plant science</title>
<idno type="ISSN">1664-462X</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice (
<i>Oryza sativa</i>
L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance. Plants were grown in nutrient solution with either low (0.01 mM) or high (1.0 mM) supply of S. Plants grown under low-S treatment showed a reduction in total biomass, mainly due to a marked reduction in shoot biomass, while root biomass and root-to-shoot ratio increased, relative to plants under high-S treatment. Genome-wide association studies (GWAS) identified loci associated with root length (
<i>qSUE2-3, qSUE4,</i>
and
<i>qSUE9</i>
), and root (
<i>qSUE1, qSUE2-1, and qSUE3-1 and qSUE3-2</i>
) or total dry matter (
<i>qSUE2, qSUE3-1,</i>
and
<i>qSUE11</i>
). Candidate genes identified at associated loci coded for enzymes involved in secondary S metabolic pathways (sulfotransferases), wherein the sulfated compounds play several roles in plant responses to abiotic stress; cell wall metabolism including wall loosening and modification (carbohydrate hydrolases: beta-glucosidase and beta-gluconase) important for root growth; and cell detoxification (glutathione S-transferase). This study confirmed the existence of genetic variation conferring tolerance to S deficiency among traditional aus rice varieties. The advantageous haplotypes identified could be exploited through marker assisted breeding to improve tolerance to S-deficiency in modern cultivars in order to achieve sustainable crop production and food security.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32010158</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-462X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>10</Volume>
<PubDate>
<Year>2019</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in plant science</Title>
<ISOAbbreviation>Front Plant Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.</ArticleTitle>
<Pagination>
<MedlinePgn>1668</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fpls.2019.01668</ELocationID>
<Abstract>
<AbstractText>Sulfur (S) is an essential nutrient for plant growth and development; however, S supply for crop production is decreasing due to reduced inputs from atmospheric deposition and reduced application of S-containing fertilizers. Sulfur deficiency in soil is therefore becoming a widespread cause of reduced grain yield and quality in rice (
<i>Oryza sativa</i>
L). We therefore assessed the genotypic variation for tolerance to S deficiency in rice and identified loci associated with improved tolerance. Plants were grown in nutrient solution with either low (0.01 mM) or high (1.0 mM) supply of S. Plants grown under low-S treatment showed a reduction in total biomass, mainly due to a marked reduction in shoot biomass, while root biomass and root-to-shoot ratio increased, relative to plants under high-S treatment. Genome-wide association studies (GWAS) identified loci associated with root length (
<i>qSUE2-3, qSUE4,</i>
and
<i>qSUE9</i>
), and root (
<i>qSUE1, qSUE2-1, and qSUE3-1 and qSUE3-2</i>
) or total dry matter (
<i>qSUE2, qSUE3-1,</i>
and
<i>qSUE11</i>
). Candidate genes identified at associated loci coded for enzymes involved in secondary S metabolic pathways (sulfotransferases), wherein the sulfated compounds play several roles in plant responses to abiotic stress; cell wall metabolism including wall loosening and modification (carbohydrate hydrolases: beta-glucosidase and beta-gluconase) important for root growth; and cell detoxification (glutathione S-transferase). This study confirmed the existence of genetic variation conferring tolerance to S deficiency among traditional aus rice varieties. The advantageous haplotypes identified could be exploited through marker assisted breeding to improve tolerance to S-deficiency in modern cultivars in order to achieve sustainable crop production and food security.</AbstractText>
<CopyrightInformation>Copyright © 2020 Pariasca-Tanaka, Baertschi and Wissuwa.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Pariasca-Tanaka</LastName>
<ForeName>Juan</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Baertschi</LastName>
<ForeName>Cedric</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wissuwa</LastName>
<ForeName>Matthias</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>01</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Plant Sci</MedlineTA>
<NlmUniqueID>101568200</NlmUniqueID>
<ISSNLinking>1664-462X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">aus</Keyword>
<Keyword MajorTopicYN="N">genome-wide association studies</Keyword>
<Keyword MajorTopicYN="N">quantitative trait locus</Keyword>
<Keyword MajorTopicYN="N">rice</Keyword>
<Keyword MajorTopicYN="N">sulfur, deficiency tolerance</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>06</Month>
<Day>06</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>27</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32010158</ArticleId>
<ArticleId IdType="doi">10.3389/fpls.2019.01668</ArticleId>
<ArticleId IdType="pmc">PMC6975283</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biometrics. 1975 Jun;31(2):423-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1174616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2011 Sep 13;2:467</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21915109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Aug;55(404):1809-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15234990</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Sep 03;9:1223</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30233605</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2012 Aug 23;488(7412):535-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22914168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2007 Oct 1;23(19):2633-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17586829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jun;132(2):597-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12805590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1997 Sep;35(1-2):25-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9291957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2008 Apr 28;8:49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18442365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2018 Jun 07;9:751</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29930563</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Sep 20;7:1384</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27703460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2015 Jan;66(1):293-306</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25371505</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Aug 10;442(7103):705-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16900200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Acta Biochim Pol. 2008;55(3):457-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18787711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2015 Apr 29;10(4):e0124215</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25923470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Genomics. 2015;2015:603182</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25763382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2002 Jun 21;296(5576):2225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12029063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2016 Oct;244(4):819-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27198135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Nov;134(3):508-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2016 May 26;11(5):e0155425</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27228161</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Dec;11(12):610-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17092760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2014;15(11):506</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25468217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Commun. 2016 Feb 04;7:10532</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842267</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Genet. 2011 Aug;7(8):e1002221</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21829395</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Jan 15;21(2):263-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15297300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Jan;57(1):53-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15821868</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2014 Oct 16;5:556</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25360143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2016 Feb;67(4):1179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26842979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2011 Nov 01;2:73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22639608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2017 Sep 1;58(9):1461-1476</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28541504</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Jun 08;7:806</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27375660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2015 Dec;241:1-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26706053</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2018 Dec;41(12):2731-2743</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29981171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2010 Apr;27(4):862-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19942615</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Japon</li>
</country>
</list>
<tree>
<country name="Japon">
<noRegion>
<name sortKey="Pariasca Tanaka, Juan" sort="Pariasca Tanaka, Juan" uniqKey="Pariasca Tanaka J" first="Juan" last="Pariasca-Tanaka">Juan Pariasca-Tanaka</name>
</noRegion>
<name sortKey="Baertschi, Cedric" sort="Baertschi, Cedric" uniqKey="Baertschi C" first="Cedric" last="Baertschi">Cedric Baertschi</name>
<name sortKey="Wissuwa, Matthias" sort="Wissuwa, Matthias" uniqKey="Wissuwa M" first="Matthias" last="Wissuwa">Matthias Wissuwa</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantGlutaTransV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000246 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000246 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantGlutaTransV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32010158
   |texte=   Identification of Loci Through Genome-Wide Association Studies to Improve Tolerance to Sulfur Deficiency in Rice.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32010158" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantGlutaTransV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 15:50:29 2020. Site generation: Sat Nov 21 15:50:53 2020